• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad Católica del Norte
  • Proyecciones: Journal of Mathematics
  • View Item
  •   Home
  • Universidad Católica del Norte
  • Proyecciones: Journal of Mathematics
  • View Item

Convergence of roundary element methods for numerical solutions of Fourier problems

Convergence of roundary element methods for numerical solutions of Fourier problems

Author
Golik, Wojciech L.

Full text
http://www.revistaproyecciones.cl/article/view/2601
10.22199/S07160917.1991.0017.00001
Abstract
Convergence proofs are given for the projection based boundary element methods for the numerical solution of various Fourier problems in regions with smooth compact boundaries. Volterra integral equations of the 2nd kind are formulated with associated integral operators mapping the space of continuous functions on a compactum into itself. The compactness of these operators ia shown, yielding the error estimates in supremum norme for a wide class of projection based BEMs. Extensions of the error analysis to the initial -boundary value problems of convective heat conduction are also discussed.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB