Show simple item record

dc.creatorTyszkowska, Ewa
dc.date2017-05-08
dc.date.accessioned2019-11-14T11:59:56Z
dc.date.available2019-11-14T11:59:56Z
dc.identifierhttps://www.revistaproyecciones.cl/article/view/1543
dc.identifier10.4067/S0716-09172006000200004
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/113257
dc.descriptionA symmetry of a Riemann surface X is an antiholomorphic involution φ. The species of φ is the integer εk, where k is the number of connected components in the set Fix(φ) of fixed points of φ and ε = -1 if X \ Fix(φ) is connected and ε = 1 otherwise. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if it admits a conformal involution ρ, called a p-hyperelliptic involution, for which X/ρ is an orbifold of genus p. Symmetries of p-hyperelliptic Riemann surfaces has been studied by Klein for p = 0 and by Bujalance and Costa for p > 0. Here we study the species of symmetries of so called pq-hyperelliptic surface defined as a Riemann surface which is p- and q-hyperelliptic simultaneouslyes-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttps://www.revistaproyecciones.cl/article/view/1543/2405
dc.rightsDerechos de autor 2006 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 25 No 2 (2006); 179-189en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 25 Núm. 2 (2006); 179-189es-ES
dc.source0717-6279
dc.source0716-0917
dc.subjectAutomorphisms of Riemann surfacees-ES
dc.subjectp-hyperelliptic Riemann surfacees-ES
dc.subjectfixed points of automorphismes-ES
dc.subjectsymmetryes-ES
dc.subjectautomorfismos de superficie de Riemannes-ES
dc.subjectsuperficie de Riemann p-hiperelípticaes-ES
dc.subjectpuntos fijos de automorfismoes-ES
dc.subjectsimetría.es-ES
dc.titleOn symmetries of pq-hyperelliptic Riemann surfaceses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record