dc.creator | Titus, P. | |
dc.creator | Eldin Vanaja, S. | |
dc.date | 2017-10-20 | |
dc.date.accessioned | 2019-11-14T12:00:14Z | |
dc.date.available | 2019-11-14T12:00:14Z | |
dc.identifier | https://www.revistaproyecciones.cl/article/view/2381 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/113332 | |
dc.description | For an edge xy in a connected graph G of order p ≥ 3, a set SCV(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as the xy-monophonic number of G, denoted by mxy (G). An xy-monophonic set of cardinality mxy (G) is called a mxy -set of G. We determine bounds for it and find the same for special classes of graphs. It is shown that for any three positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a connected graph G with monophonic radius r, monophonic diameter d and mxy (G) = n for some edge xy in G. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | https://www.revistaproyecciones.cl/article/view/2381/1974 | |
dc.rights | Derechos de autor 2017 Proyecciones. Journal of Mathematics | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 36 No 3 (2017); 363-372 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 36 Núm. 3 (2017); 363-372 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.subject | Monophonic path | en-US |
dc.subject | Vertex monophonic number | en-US |
dc.subject | Edge fixed monophonic number | en-US |
dc.title | Edge fixed monophonic number of a graph. | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |