Show simple item record

dc.creatorTitus, P.
dc.creatorEldin Vanaja, S.
dc.date2017-10-20
dc.date.accessioned2019-11-14T12:00:14Z
dc.date.available2019-11-14T12:00:14Z
dc.identifierhttps://www.revistaproyecciones.cl/article/view/2381
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/113332
dc.descriptionFor an edge xy in a connected graph G of order p ≥ 3, a set SCV(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as the xy-monophonic number of G, denoted by mxy (G). An xy-monophonic set of cardinality mxy (G) is called a mxy -set of G. We determine bounds for it and find the same for special classes of graphs. It is shown that for any three positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a connected graph G with monophonic radius r, monophonic diameter d and mxy (G) = n for some edge xy in G.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttps://www.revistaproyecciones.cl/article/view/2381/1974
dc.rightsDerechos de autor 2017 Proyecciones. Journal of Mathematicses-ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 36 No 3 (2017); 363-372en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 36 Núm. 3 (2017); 363-372es-ES
dc.source0717-6279
dc.source0716-0917
dc.subjectMonophonic pathen-US
dc.subjectVertex monophonic numberen-US
dc.subjectEdge fixed monophonic numberen-US
dc.titleEdge fixed monophonic number of a graph.en-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record