Hermite-Hadamard type fractional integral inequalities for products of two MT(r;g,m,φ)-preinvex functions
Author
Kashuri, Artion
Liko, Rozana
Abstract
A new class of MT(r;g,m,φ)-preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving products of two MT(r;g,m,φ)-preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for products of two MT(r;g,m,φ)-preinvex functions via Riemann-Liouville fractional integrals are established. These general inequalities give us some new estimates for the left-hand side of Gauss-Jacobi type quadrature formula and Hermite-Hadamard type fractional integral inequalities. At the end, some conclusions and future research are given.
Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
Ostrowski type fractional integral inequalities for s-Godunova-Levin functions via k-fractional integrals.
Farid, Ghulam; Rehman, Atiq Ur; Usman, Muhammad. Proyecciones. Journal of Mathematics; Vol 36 No 4 (2017); 753-767 -
Ostrowski type fractional integral inequalities for s-Godunova-Levin functions via k-fractional integrals.
Farid, Ghulam; Rehman, Atiq Ur; Usman, Muhammad. Proyecciones. Journal of Mathematics; Vol 36 No 4 (2017); 753-767 -
Hermite-Hadamard type fractional integral inequalities for generalized beta (r, g)-preinvex functions.
Kashuri, Artion; Liko, Rozana. Proyecciones. Journal of Mathematics; Vol 36 No 4 (2017); 711-726