Show simple item record

dc.creatorIbrahim, Muhammad
dc.creatorAsim, Muhammad Ahsan
dc.creatorKhan, S.
dc.creatorWaseem , Muhammad
dc.date2021-04-19
dc.date.accessioned2021-05-07T12:15:38Z
dc.date.available2021-05-07T12:15:38Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3715
dc.identifier10.22199/issn.0717-6279-3715
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/166856
dc.descriptionLet G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u1u2 and v1v2 in E(G) satisfy wt(u1u2) ≠ wt(v1v2); where wt(u) = ψ (u) + ∑uv∊E(G) ψ(uv) and wt(u1u2) = ψ(u1) + ψ(u1u2) + ψ(u2): The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G): In this paper, we determine the exact value of the total irregularity strength of cubic graphs.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3715/3720
dc.rightsCopyright (c) 2021 Muhammad Ibrahim, Muhammad Ahsan Asim, S. Khan, Muhammad Waseemen-US
dc.rightshttp://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Pre-proofsen-US
dc.sourceProyecciones. Revista de Matemática; Pre-proofses-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-preproofs
dc.subjecttotal edge irregularity strength, total vertex irregularity strength, total irregularity strength, Plane graph, Crossed Prism graph, Necklace graph, Goldberg Snark graph.en-US
dc.titleTotal irregularity strength of some cubic graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US


This item appears in the following Collection(s)

Show simple item record