Show simple item record

dc.creatorLeclercq, Régis
dc.creatorZeggar, Abdellatif
dc.date2022-09-13
dc.date.accessioned2022-11-15T12:37:03Z
dc.date.available2022-11-15T12:37:03Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4559
dc.identifier10.22199/issn.0717-6279-4559
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/215670
dc.descriptionIn this paper, we study the discrete cohomological equation of a contracting linear automorphism A of the Euclidean space Rd. More precisely, if δ is the cobord operator defined on the Fréchet space E = Cl (Rd) (0 ≤ l ≤ ∞) by: δ(h) = h − h ◦ A, we show that: If E = C0(Rd), the range δ (E) of δ has infinite codimension and its closure is the hyperplane E0 consisting of the elements of E vanishing at 0. Consequently, H1 (A, E) is infinite dimensional non Hausdorff topological vector space and then the automorphism A is not cohomologically C0-stable. If E = Cl (Rd), with 1 ≤ l ≤ ∞, the space δ (E) coincides with the closed hyperplane E0. Consequently, the cohomology space H1 (A, E) is of dimension 1 and the automorphism A is cohomologically Cl-stable.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4559/4132
dc.rightsCopyright (c) 2022 Régis Leclercq, Abdellatif Zeggaren-US
dc.rightshttps://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 41 No. 5 (2022); 1075-1091en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 41 Núm. 5 (2022); 1075-1091es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2022-05
dc.subjectfréchet spaceen-US
dc.subjectcohomological equationen-US
dc.subject34C40en-US
dc.subject46E10en-US
dc.subject37C05en-US
dc.titleOn the cohomological equation of a linear contractionen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record