• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Sociedad Chilena de Química
  • Journal of the Chilean Chemical Society
  • View Item
  •   Home
  • Sociedad Chilena de Química
  • Journal of the Chilean Chemical Society
  • View Item

EFFECT OF HYDRATION AND PACKING ORDER ON LARGE UNILAMELLAR VESICLE FUSION: THE ROLE OF CHOLESTEROL

Author
Cuevas, Francisco J.

Valle, Carolina A.

Aguilar, Luis F.

Full text
http://www.jcchems.com/index.php/JCCHEMS/article/view/322
Abstract
Several studies examining vesicle fusion have been reported in last decades and have established a number of factors favoring the process of vesicle fusion. To determine whether variations to the physicochemical properties of the membrane affect the process of vesicle fusion, we worked with binary and ternary mixtures of large unilamellar vesicles (LUVs). The selected binary models were dioleoyl phosphocholine-cholesterol (DOPC-chol) and disteraroyl phosphocholine-cholesterol (DSPC-chol), and the tertiary mixtures were phosphatidylcholine-phsophatidylethanolamine-cholesterol (PC-PE-Chol); phosphatidylcholine-sphingomyelin-cholesterol (PC-SM-Chol); and phosphatidylcholine-phosphatidylserine-cholesterol (PC-PS-Chol). For all these models, the effect of cholesterol content on the lamella physicochemical properties was determined using 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy, generalized polarization of 2-dimethylamino- 6-lauroylnaphthalene (Laurdan), and DPH fluorescence lifetime. To determine whether fusion of these vesicles varied according to lipid composition, the % mixing content and the % leakage were determined. Examining membrane incorporation using fluorescence steady-state and time-resolved probe assays in the models indicated that cholesterol content affected packing order and lamellar hydration. In most of the models, nonmonotonic variations were observed for these parameters, and these variations could be interpreted as increases in the proportion of ordered microdomains. When the proportion of these domains is higher, the packing order increases, and the lamellar water decrease. Similarly, the % mixing, which was assessed as a fusion parameter, also exhibited nonmonotonic behavior, indicating that the fusion process is enhanced at these concentrations of cholesterol. However, DSPC vesicles do not merge, so more than the presence of microdomains is required to stabilize fusion.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB