• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Sociedad Chilena de Química
  • Journal of the Chilean Chemical Society
  • View Item
  •   Home
  • Sociedad Chilena de Química
  • Journal of the Chilean Chemical Society
  • View Item

ANTIBACTERIAL ACTIVITY AND HUMAN CELL CYTOTOXIC OF COBALT (III) COMPLEXES WITH 1,10-PHENANTHROLINE AND CARBOHYDRATE LIGANDS

Author
Parada, José

Atria, Ana María

Baggio, Ricardo

Wiese, Guillermo

Lagos, Sebastián

Pavón, Alequis

Rivas, Elizabeth

Navarro, Laura

Corsini, Gino

Full text
http://www.jcchems.com/index.php/JCCHEMS/article/view/472
Abstract
The mononuclear cobalt (III) complex derived from 1,10-phenanthroline with lactose [Co(phen)2lactose]Cl2·3H2O (1) has been prepared and its properties have been compared with the sucrose complex [Co(phen)2sucrose]Cl2·3H2O (2) and the complex without carbohydrate [Co(phen)2Cl2]Cl·3H2O (3).The chemical structure of (1) was assigned by 1H-NMR, IR, CD and UV-Vis spectral data. The antibacterial activity of (1) - (3) was evaluated by disc-diffusion assays, using Gram-negative and positive bacteria. The minimum inhibitory concentration of the three complexes on the studied bacteria and their cytotoxicity on HEK293 human cells was determined. A colorimetric plate assay was used to distinguish bacteriostatic from bactericidal effect. Finally, the complexes uptake mechanism was evaluated using bacteria with mutated genes that encode for carbohydrate and siderophore receptors. The results indicate that complex (1) has an antibacterial activity similar to (3), while (2) presents a more restricted one. Moreover, all three complexes act by a bacteriostatic effect against bacterial cells and both (1) and (3) use a siderophore uptake mechanism to enter on bacterial cytoplasm. Cytotoxicity assays show that carbohydrate complexes are not cytotoxic to human cells, in contrast with complex (3), which is highly toxic. These results suggest that the use of the lactose ligand would maintain the antibacterial activity and uptake mechanism of the complex at reasonable levels, and would also reduce its toxicity against human cells. Thus, its strategic use would allow a decrease in toxicity of complexes used in eventual studies on eukaryotic systems.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB