• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Sociedad Chilena de Química
  • Journal of the Chilean Chemical Society
  • View Item
  •   Home
  • Sociedad Chilena de Química
  • Journal of the Chilean Chemical Society
  • View Item

TRANSLOCATION OF TRANSITION METALS DURING THE DEGRADATION OF PINUS RADIATA BY GLOEOPHYLLUM TRABEUM ON THE FOREST SOIL

Author
Pozo, Claudio

Melín, Victoria

Elissetche, Juan Pedro

Contreras, David

Freer, Juanita

Rodríguez, Jaime

Full text
http://www.jcchems.com/index.php/JCCHEMS/article/view/99
Abstract
Brown rot fungi (BRF) are highly destructive wood degraders characterized by extensive degradation and mineralization of cellulose and hemicellulose, in most of the cases without causing a substantial removal of lignin. BRF have not a complete cellulase complex neither ligninolytic enzymes, therefore, has been hypothesized that to degrade wood components, a non-enzymatic mechanism based on ●OH radicals production through Fenton reaction is also involved. The availability of iron limits the Fenton reaction in wood biodegradation by BRF, because this metal (and other transition metals) is found in small amounts in wood. For this reason, it has been postulated that the fungus transport metals from the soil. To study the effect of soil and transition metal translocation (Fe, Cu, and Mn) on wood biodegradation by the BRF Gloeophyllum trabeum, Pinus radiata wood chips (20 years old) were incubated with forest soil in stationary tray bioreactor for a period until 16 weeks. Translocation of transition metals, mass and wood components (extractives, carbohydrates, and lignin) loss, the decrease of holocellulose viscosity and oxalic acid production were determined at different intervals of time.Wood on soil showed a high translocation of transition metals mainly Fe. Translocation of soil metals into the wood was relevant for improving fungal growth and wood decay, which is correlated significantly with higher loss mass and wood components compared with degradation without soil. 
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB