dc.creator | SWARTZ,CHARLES | |
dc.date | 2001-05-01 | |
dc.date.accessioned | 2019-11-14T12:52:35Z | |
dc.date.available | 2019-11-14T12:52:35Z | |
dc.identifier | https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000100002 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/115482 | |
dc.description | We consider the Banach-Mackey property for pairs of vector spaces E and E' which ar in duality. Le A be and algebra of sets and assume that P is an additive map from A into the projection operators on E. We define a continuous gliding hump property for the map P and show that pairs with this gliding hump property and another measure theoretic property are Banch-Mackey pairs, i.e., weakly bounded subsets of E are strongly bounded. Examples of vector valued function spaces, such as the space of Pettis integrable functions, which satisfy these conditions are given | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
dc.relation | 10.4067/S0716-09172001000100002 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Proyecciones (Antofagasta) v.20 n.1 2001 | |
dc.title | A MULTIPLIER GLIDING HUMP PROPERTY FOR SEQUENCE SPACES | |