• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Pontificia Universidad Católica de Chile
  • Revista de la Construcción. Journal of Construction
  • View Item
  •   Home
  • Pontificia Universidad Católica de Chile
  • Revista de la Construcción. Journal of Construction
  • View Item

Experimental study on the interfacial behavior of normal and lightweight concrete

Author
Cho, Shih Wei

Full text
http://revistadelaconstruccion.uc.cl/index.php/rdlc/article/view/1837
Abstract
DOI: 10.7764/RDLC.18.3.476The interface between aggregate and mortar or paste is a weak phase. This has a serious effect on the properties of concretes. Because of the high porosity of lightweight aggregate, the interface of lightweight concrete is different from that of normal weight concrete. In this study, the effect of interfacial interactions between lightweight aggregate and mortar on the mechanical and chloride ion transport properties of concretes was investigated. The test variables were the volume fraction of the lightweight aggregate and the water–cement (W/C) ratio. The elastic modulus, the electrical charge passed from the rapid chloride penetration test (RCPT), and chloride ion penetration depth were determined. In addition, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to observe the microstructures of the interfaces. SEM observation of the lightweight concrete revealed that the interface bonding between mortar and aggregate is considerably firmer than that of normal weight concrete. However, test results indicate that the ability of the lightweight concrete to resist chloride ion intrusion is worse than that of normal weight concrete. Comparison with theoretical models reveals that a negative factor affects the chloride ion transmission in lightweight concrete. As the volume fraction of lightweight aggregate increased, this negative influence is also increased. Chloride ions were detected both in the mortar and the lightweight aggregate in the EDX test. This indicates that chloride ions passed through the lightweight aggregate during the RCPT and can thus influence chloride ion transmission throughout lightweight concrete.  
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB