Show simple item record

dc.creatorHIDALGO,RUBÉN A.
dc.date2001-08-01
dc.date.accessioned2020-02-17T15:26:57Z
dc.date.available2020-02-17T15:26:57Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200002
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/127058
dc.descriptionIn this note we consider a class of groups of conformal automorphisms of closed Riemann surfaces containing those which can be lifted to some Schottky uniformization. These groups are those which satisfy a necessary condition for the Schottky lifting property. We find that all these groups have upper bound 12(g - 1), where g <FONT FACE=Symbol>&sup3;</FONT> 2 is the genus of the surface. We also describe a sequence of infinite genera g1< g2 < ... for which these upper bound is attained. Also lower bounds are found, for instance, (i ) 4(g+1) for even genus and 8(g - 1) for odd genus. Also, for cyclic groups in such a family sharp upper bounds are given
dc.formattext/html
dc.languageen
dc.publisherUniversidad Católica del Norte, Departamento de Matemáticas
dc.relation10.4067/S0716-09172001000200002
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceProyecciones (Antofagasta) v.20 n.2 2001
dc.subjectSchottky groups
dc.subjectReimann surfaces
dc.subjectconformal automorphisms
dc.titleBOUNDS FOR CONFORMAL AUTOMOMORPHISMS OF RIEMANN SURFACES WITH CONDITION (A)


This item appears in the following Collection(s)

Show simple item record