dc.creator | PEREIRA,M. S. | |
dc.creator | DOS SANTOS,N. M. | |
dc.date | 2002-08-01 | |
dc.date.accessioned | 2020-02-17T15:28:24Z | |
dc.date.available | 2020-02-17T15:28:24Z | |
dc.identifier | https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000200005 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/127918 | |
dc.description | We prove a de Rham-like theorem for foliated bundles F ! (M; F )¼ ! B showing that the cohomology H¤( F ) is isomorphicto the equivariant cohomology H¡ ³ eB; C1 (F); ¡ = ¼1 (B)and eB the universal covering of B. When B is an Eilenberg-Mac Lane space K (¡; 1) the cohomology H¤ ( F ) is the cohomology of the ¡-module C1 (F). This gives algebraic models for H¤ ( F ) and geometrial models for the cohomology of the ¡-module C1 (F). Using this isomorphism and a theorem of J. Palis and J.C. Yoccoz on the triviality of centralizers of diffeomorphisms, [14] and [15] we show that H¤( F ) is infinite dimensional for a large class of foliated bundles. Using this isomorphism R. u. Luz computed in [9] the cohomology of the foliated bunddles suspensions of actions of Z P by afine transformations of T Q. AMS (MOS) Subj class: 57R30 | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
dc.relation | 10.4067/S0716-09172002000200005 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Proyecciones (Antofagasta) v.21 n.2 2002 | |
dc.subject | foliated bundles | |
dc.subject | foliated cohomology | |
dc.subject | equivariant cohomology | |
dc.subject | cohomology of groups | |
dc.title | ON THE COHOMOLOGY OF FOLIATED BUNDLES | |