dc.creator | HIDALGO,RUBÉN | |
dc.date | 2003-08-01 | |
dc.date.accessioned | 2020-02-17T15:30:38Z | |
dc.date.available | 2020-02-17T15:30:38Z | |
dc.identifier | https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200002 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/129188 | |
dc.description | We show that a non-elementary finitely generated torsion-free func-tion group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torelli s theorem for closed Riemann sur-faces.For a general non-elementary torsion-free Kleinian group the above rigidity property still unknown | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
dc.relation | 10.4067/S0716-09172003000200002 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Proyecciones (Antofagasta) v.22 n.2 2003 | |
dc.subject | Kleinian groups | |
dc.subject | Function groups | |
dc.subject | Torelli s theorem | |
dc.subject | Hyperbolic 3-manifolds | |
dc.title | A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI S THEOREM | |