Show simple item record

dc.creatorMIRANDA,HÉCTOR
dc.date2003-08-01
dc.date.accessioned2020-02-17T15:30:38Z
dc.date.available2020-02-17T15:30:38Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200003
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/129189
dc.descriptionThere are well known inequalities for Hermitian matrices A and B that relate the diagonal entries of A+B to the eigenvalues of A and B. These inequalities are easily extended to more general inequalities in the case where the matrices A and B are perturbed through con-gruences of the form UAU*+ V BV *; where U and V are arbitrary unitary matrices, or to sums of more than two matrices. The extremal cases where these inequalities and some generalizations become equal-ities are examined here
dc.formattext/html
dc.languageen
dc.publisherUniversidad Católica del Norte, Departamento de Matemáticas
dc.relation10.4067/S0716-09172003000200003
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceProyecciones (Antofagasta) v.22 n.2 2003
dc.subjectHermitian matrix
dc.subjecteigenvalues
dc.subjectdiagonal elements
dc.titleDIAGONALS AND EIGENVALUES OF SUMS OF HERMITIAN MATRICES: EXTREME CASES


This item appears in the following Collection(s)

Show simple item record