dc.creator | MIRANDA,HÉCTOR | |
dc.date | 2003-08-01 | |
dc.date.accessioned | 2020-02-17T15:30:38Z | |
dc.date.available | 2020-02-17T15:30:38Z | |
dc.identifier | https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200003 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/129189 | |
dc.description | There are well known inequalities for Hermitian matrices A and B that relate the diagonal entries of A+B to the eigenvalues of A and B. These inequalities are easily extended to more general inequalities in the case where the matrices A and B are perturbed through con-gruences of the form UAU*+ V BV *; where U and V are arbitrary unitary matrices, or to sums of more than two matrices. The extremal cases where these inequalities and some generalizations become equal-ities are examined here | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
dc.relation | 10.4067/S0716-09172003000200003 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Proyecciones (Antofagasta) v.22 n.2 2003 | |
dc.subject | Hermitian matrix | |
dc.subject | eigenvalues | |
dc.subject | diagonal elements | |
dc.title | DIAGONALS AND EIGENVALUES OF SUMS OF HERMITIAN MATRICES: EXTREME CASES | |