Show simple item record

dc.creatorELGUETA,LUISA
dc.creatorSUAZO,AVELINO
dc.date2004-08-01
dc.date.accessioned2020-02-17T15:32:53Z
dc.date.available2020-02-17T15:32:53Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000200005
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/130456
dc.descriptionLet A be a commutative power-associative nilalgebra: In this paper we prove that when A (of characteristic &#8800; 2) is of dimension < 8 and x4 = 0 for all x <IMG SRC="/fbpe/img/proy/v23n2/e.jpg" WIDTH=18 HEIGHT=16>A; then ((A²)²)² = 0: That is, A is solvable. We conclude that if A is of dimension < 7 over a field of characteristic &#8800; 2, 3 and 5; then A is solvable
dc.formattext/html
dc.languageen
dc.publisherUniversidad Católica del Norte, Departamento de Matemáticas
dc.relation10.4067/S0716-09172004000200005
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceProyecciones (Antofagasta) v.23 n.2 2004
dc.titleSOLVABILITY OF COMMUTATIVE POWER-ASSOCIATIVE NILALGEBRAS OF NILINDEX 4 AND DIMENSION


This item appears in the following Collection(s)

Show simple item record