Show simple item record

dc.creatorSOTO,RICARDO L
dc.date2005-05-01
dc.date.accessioned2020-02-17T15:36:22Z
dc.date.available2020-02-17T15:36:22Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/132397
dc.descriptionLet Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ
dc.formattext/html
dc.languageen
dc.publisherUniversidad Católica del Norte, Departamento de Matemáticas
dc.relation10.4067/S0716-09172005000100006
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceProyecciones (Antofagasta) v.24 n.1 2005
dc.subjectsymmetric nonnegative inverse eigenvalue problem
dc.titleREALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*


This item appears in the following Collection(s)

Show simple item record