dc.creator | SOTO,RICARDO L | |
dc.date | 2005-05-01 | |
dc.date.accessioned | 2020-02-17T15:36:22Z | |
dc.date.available | 2020-02-17T15:36:22Z | |
dc.identifier | https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/132397 | |
dc.description | Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
dc.relation | 10.4067/S0716-09172005000100006 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Proyecciones (Antofagasta) v.24 n.1 2005 | |
dc.subject | symmetric nonnegative inverse eigenvalue problem | |
dc.title | REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES* | |