Show simple item record

dc.creatorM.I. Belishev
dc.creatorA.F. Vakulenko
dc.date2019-04-01
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2115
dc.identifier10.4067/S0719-06462019000100001
dc.descriptionLet Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space 𝒞(Ω) of harmonic fields is a subspace of the Banach algebra 𝒬 (Ω) of continuous quaternion fields with the point-wise multiplication qq′ = {αα′ − u · u ′ , αu′ + α ′u + u ∧ u ′ }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨𝒞(Ω) generated by harmonic fields is dense in 𝒬 (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2115/1880
dc.sourceCUBO, A Mathematical Journal; Vol. 21 No. 1 (2019); 01–19en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 21 Núm. 1 (2019); 01–19es-ES
dc.source0719-0646
dc.source0716-7776
dc.subject3d quaternion harmonic fields, real uniform Banach algebrasen-US
dc.subjectStone- Weierstrass type theorem on densityen-US
dc.subjectuniqueness theoremsen-US
dc.titleOn algebraic and uniqueness properties of harmonic quaternion fields on 3d manifoldsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record