• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Pontificia Universidad Católica de Chile
  • Revista de la Construcción. Journal of Construction
  • View Item
  •   Home
  • Pontificia Universidad Católica de Chile
  • Revista de la Construcción. Journal of Construction
  • View Item

Predicting Marshall stability and flow of bituminous mix containing waste fillers by the adaptive neuro-fuzzy inference system

Author
Mistry, Raja

Kumar Roy, Tapas

Full text
https://revistadelaconstruccion.uc.cl/index.php/RDLC/article/view/14082
10.7764/rdlc.19.2.209-219
Abstract
The practice of using different non-biddable wastes in place of conventional filler is successively extended nowadays, leading it hard to predict the properties of modified bituminous mixes. The present work aims to explore the effect of using rice husk ash (RHA) and fly ash (FA) as alternative filler in place of conventional filler like hydrated lime (HL) on Marshall stability and flow of bituminous mix by fuzzy logic. This study involves the preparation of samples having seven different bitumen content varying from 3.5% to 6.5% with 0.5% increment. Mixtures containing 2%, 4%, 6% and 8% of HL, RHA and FA separately as filler were fabricated and compared with the control mix (i.e. mix containing 2% hydrated lime as filler). Further, the Marshall mix design procedure was followed to determine the optimum bitumen content (OBC) of each mix. Experimental results showed that the replacement of conventional filler with RHA and FA improved the Marshall properties and decreases the OBC values of the modified mix when added with 4% filler ratio. Further, for predicting the Marshall stability and flow, a Mamdani-type fuzzy inference system model was devised in Matlab toolbox using percentage bitumen, air voids, percentage of HL, RHA and FA as input and Marshall stability and flow as output. In comparison, it is realized that predicted values are closely relevant to the actual one and the prediction ability of the fuzzy logic model is suitable for getting the said values by avoiding the expensive, time consuming and repetitive laboratory tests.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB