• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Pontificia Universidad Católica de Chile
  • International Journal of Agriculture and Natural Resources
  • View Item
  •   Home
  • Pontificia Universidad Católica de Chile
  • International Journal of Agriculture and Natural Resources
  • View Item

Local influence when fitting Gaussian spatial linear models: an agriculture application

Local influence when fitting Gaussian spatial linear models: an agriculture application

Author
Grzegozewski, Denise M.

Uribe-Opazo, Miguel A.

De Bastiani, Fernanda

Galea, Manuel

Full text
https://www.rcia.uc.cl/index.php/ijanr/article/view/1161
Abstract
Outliers can adversely affect how data fit into a model. Obviously, an analysis of dependent data is different from that of independent data. In the latter, i.e., in cases involving spatial data, local outliers can differ from the data in the neighborhood. In this article, we used the local influence technique to identify influential points in the response variables using two different schemes of perturbations. We applied this technique to soil chemical properties and soybean yield. We evaluated the effects of the influential points on the spatial model selection, the parameter estimation by maximum likelihood and the construction of thematic maps by kriging. In the construction of the thematic maps in studies with and without the influential points, there were changes in the levels of nutrients, allowing for the appropriate application of input, generating greater savings for the producer and contributing to the protection of the environment. Los valores discrepantes pueden afectar negativamente el ajuste de un modelo. El análisis de datos dependientes es diferente al de datos independientes. En el primer caso, envuelven datos espaciales que pueden tener valores discrepantes localmente y que tienen algunas características diferentes de los datos vecinos. En este artículo, el objetivo fue detectar los puntos influyentes por medio de la técnica de influencia local en la variable de respuesta, mediante el uso de dos esquemas diferentes de perturbaciones denominados: perturbación aditiva y perturbación de Zhu. Se aplicó esta técnica a las propiedades químicas del suelo y a la productividad de la soja. Se evaluaron los efectos de los puntos influyentes en la elección del modelo, en la estimación de parámetros de máxima verosimilitud y la construcción de mapas temáticos mediante “kriging”. En la construcción de mapas temáticos, se pudo observar alteraciones en los niveles de nutrientes al realizar el estudio con y sin los puntos de influencia, de tal forma que permite una aplicación apropiada de los insumos, lo que genera un mayor ahorro para el productor y en la contribución a la protección del medio ambiente.
 
Outliers can adversely affect how data fit into a model. Obviously, an analysis of dependent data is different from that of independent data. In the latter, i.e., in cases involving spatial data, local outliers can differ from the data in the neighborhood. In this article, we used the local influence technique to identify influential points in the response variables using two different schemes of perturbations. We applied this technique to soil chemical properties and soybean yield. We evaluated the effects of the influential points on the spatial model selection, the parameter estimation by maximum likelihood and the construction of thematic maps by kriging. In the construction of the thematic maps in studies with and without the influential points, there were changes in the levels of nutrients, allowing for the appropriate application of input, generating greater savings for the producer and contributing to the protection of the environment. Los valores discrepantes pueden afectar negativamente el ajuste de un modelo. El análisis de datos dependientes es diferente al de datos independientes. En el primer caso, envuelven datos espaciales que pueden tener valores discrepantes localmente y que tienen algunas características diferentes de los datos vecinos. En este artículo, el objetivo fue detectar los puntos influyentes por medio de la técnica de influencia local en la variable de respuesta, mediante el uso de dos esquemas diferentes de perturbaciones denominados: perturbación aditiva y perturbación de Zhu. Se aplicó esta técnica a las propiedades químicas del suelo y a la productividad de la soja. Se evaluaron los efectos de los puntos influyentes en la elección del modelo, en la estimación de parámetros de máxima verosimilitud y la construcción de mapas temáticos mediante “kriging”. En la construcción de mapas temáticos, se pudo observar alteraciones en los niveles de nutrientes al realizar el estudio con y sin los puntos de influencia, de tal forma que permite una aplicación apropiada de los insumos, lo que genera un mayor ahorro para el productor y en la contribución a la protección del medio ambiente. 
 
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB