Show simple item record

dc.creatorAouane, Abdeldjalil
dc.creatorDjebali, Smaïl
dc.creatorTaoudi, Mohamed Aziz
dc.date2020-12-07
dc.date.accessioned2021-08-17T20:35:26Z
dc.date.available2021-08-17T20:35:26Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2470
dc.identifier10.4067/S0719-06462020000300361
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/174239
dc.descriptionIn this paper, we prove the existence of mild solutions of a class of fractional semilinear integro-differential equations of order \(\beta\in(1,2]\) subjected to noncompact initial nonlocal conditions. We assume that the linear part generates an arbitrarily strongly continuous \(\beta\)-order fractional cosine family, while the nonlinear forcing term is of Carathéodory type and satisfies some fairly general growth conditions. Our approach combines the Monch fixed point theorem with some recent results regarding the measure of noncompactness of integral operators. Our conclusions improve and generalize many earlier related works. An example is provided to illustrate the main results.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2470/2027
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 22 No. 3 (2020); 361–377en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 22 Núm. 3 (2020); 361–377es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectCosine operatoren-US
dc.subjectfractional integro-differential operatoren-US
dc.subjectabstract differential equationen-US
dc.subjectnoncompact nonlocal conditionen-US
dc.titleMild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditionsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record