Show simple item record

dc.creatorAguiló Vidal, Bruno
dc.date2021-08-01
dc.date.accessioned2021-08-17T20:35:27Z
dc.date.available2021-08-17T20:35:27Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2714
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/174255
dc.descriptionWe give a simple construction for hyperelliptic varieties, defined as the quotient of a complex torus by the action of a finite group \(G\) that contains no translations and acts freely, with \(G\) any dihedral group. This generalizes a construction given by Catanese and Demleitner for \(D_4\) in dimension three.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2714/2075
dc.rightsCopyright (c) 2021 B. Aguiló Vidalen-US
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 23 No. 2 (2021); 239–244en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 23 Núm. 2 (2021); 239–244es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectAbelian varietiesen-US
dc.subjectdihedral groupen-US
dc.subjectfree actionen-US
dc.titleFree dihedral actions on abelian varietiesen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record