Show simple item record

dc.creatorGüney, H. Özlem
dc.creatorMurugusundaramoorthy, G.
dc.creatorVijaya, K.
dc.date2021-08-01
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/2718
dc.identifier10.4067/S0719-06462021000200299
dc.descriptionIn this paper we define the subclass \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) of the class \(\Sigma\) of bi-univalent functions defined in the unit disk, called \(\lambda\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions \(f\in\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z)).\) Further we determine the Fekete-Szegö result for the function class \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) and for the special cases \(\alpha=0\), \(\alpha=1\) and \(\tau =-0.618\) we state corollaries improving the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\).en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/2718/2093
dc.rightsCopyright (c) 2021 H. Özlem Güney et al.en-US
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 23 No. 2 (2021); 299–312en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 23 Núm. 2 (2021); 299–312es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectAnalytic functionsen-US
dc.subjectbi-univalenten-US
dc.subjectshell-like curveen-US
dc.subjectFibonacci numbersen-US
dc.subjectstarlike functionsen-US
dc.titleSubclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curvesen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record