dc.creator | Güney, H. Özlem | |
dc.creator | Murugusundaramoorthy, G. | |
dc.creator | Vijaya, K. | |
dc.date | 2021-08-01 | |
dc.identifier | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/2718 | |
dc.identifier | 10.4067/S0719-06462021000200299 | |
dc.description | In this paper we define the subclass \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) of the class \(\Sigma\) of bi-univalent functions defined in the unit disk, called \(\lambda\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions \(f\in\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z)).\) Further we determine the Fekete-Szegö result for the function class \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) and for the special cases \(\alpha=0\), \(\alpha=1\) and \(\tau =-0.618\) we state corollaries improving the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\). | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/2718/2093 | |
dc.rights | Copyright (c) 2021 H. Özlem Güney et al. | en-US |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | en-US |
dc.source | CUBO, A Mathematical Journal; Vol. 23 No. 2 (2021); 299–312 | en-US |
dc.source | CUBO, A Mathematical Journal; Vol. 23 Núm. 2 (2021); 299–312 | es-ES |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.subject | Analytic functions | en-US |
dc.subject | bi-univalent | en-US |
dc.subject | shell-like curve | en-US |
dc.subject | Fibonacci numbers | en-US |
dc.subject | starlike functions | en-US |
dc.title | Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |