Models implemented in the land surface temperature and vegetation indexes time series analysis: a taxonomic proposal in the context of the global climate change
Modelos implementados en el análisis de series de tiempo de temperatura superficial e índices de vegetación: una propuesta taxonómica en el contexto de cambio climático global
Author
Zuluaga Gómez, Oscar Arley
Patiño Quinchía, Jorge Eduardo
Valencia Hernández, German Mauricio
Abstract
Climate change and global warming are caused principally by anthropogenic activities. For this reason, understanding the research lines that relate Land Surface Temperature and Vegetation Index time series is of great importance, given the amplitude of different open scientific areas on global warming. The result of this classification is presented to the academic community, which divides the studies into two main representative areas in the study of climate change: (1) Geodata Modeling and Analysis and (2) Remote Sensing. From the last one, two types are derived, some constructed with Linnear Regression Analysis (RL) and others with Nonlinear Regression Analysis (RNL). On the Geodata Modeling and Analysis, the Global Climate Models (GCM) are not the right tool for these analyzes due to their coarse spatial resolution. This implies the development of hybrid models with remote sensing, which are also limited by differences in resolution. On the other hand, remote sensing is the most widely disseminated tool for this type of studies. Finally, a promising window for development in the time series opens with non-linear regression analysis.
El cambio climático y el calentamiento global son provocados principalmente por las actividades antrópicas. Por esta razón, conocer las líneas de investigación que relacionen Series de Tiempo de Temperatura Superficial e Índices de Vegetación es de suma importancia, dada la amplitud de las diferentes áreas científicas abiertas sobre el calentamiento global. Se presenta a la comunidad académica, por tanto, el resultado de la presente clasificación, la cual divide los estudios en dos áreas principales representativas en el estudio del cambio climático: (1) Modelado y Análisis de Geodatos y (2) Teledetección. De este último se derivan dos tipos, unos construidos con Análisis de Regresión Lineal (RL) y otros con Análisis de Regresión No Lineal (RNL). En el Modelado y Análisis de Geodatos, los Modelos Climáticos Globales (GCM) no son la herramienta adecuada para estos análisis debido a su gruesa resolución espacial. Esto implica el desarrollo de modelos híbridos con teledetección, que están también limitados por las diferencias de resolución. Por el contrario, la teledetección es la herramienta de mayor difusión para este tipo de estudios. Finalmente, se abre una prometedora ventana para el desarrollo en las series de tiempo con análisis de Regresión No Lineal.