Dual digraphs of finite semidistributive lattices
Author
Craig, Andrew
Haviar, Miroslav
São João, José
Full text
https://revistas.ufro.cl/ojs/index.php/cubo/article/view/320510.56754/0719-0646.2403.0369
Abstract
Dual digraphs of finite join-semidistributive lattices, meet-semidistributive lattices and semidistributive lattices are characterised. The vertices of the dual digraphs are maximal disjoint filter-ideal pairs of the lattice. The approach used here combines representations of arbitrary lattices due to Urquhart (1978) and Ploščica (1995). The duals of finite lattices are mainly viewed as TiRS digraphs as they were presented and studied in Craig--Gouveia--Haviar (2015 and 2022). When appropriate, Urquhart's two quasi-orders on the vertices of the dual digraph are also employed. Transitive vertices are introduced and their role in the domination theory of the digraphs is studied. In particular, finite lattices with the property that in their dual TiRS digraphs the transitive vertices form a dominating set (respectively, an in-dominating set) are characterised. A characterisation of both finite meet-and join-semidistributive lattices is provided via minimal closure systems on the set of vertices of their dual digraphs.