Show simple item record

dc.creatorCammaroto, Filippo
dc.date2022-12-21
dc.identifierhttps://cubo.ufro.cl/ojs/index.php/cubo/article/view/3212
dc.identifier10.56754/0719-0646.2403.0501
dc.descriptionIn this paper we establish some results of existence of infinitely many solutions for an elliptic equation involving the \(p\)-biharmonic and the \(p\)-Laplacian operators coupled with Navier boundary conditions where the nonlinearities depend on two real parameters and do not satisfy any symmetric condition. The nature of the approach is variational and the main tool is an abstract result of Ricceri. The novelty in the application of this abstract tool is the use of a class of test functions which makes the assumptions on the data easier to verify.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://cubo.ufro.cl/ojs/index.php/cubo/article/view/3212/2275
dc.rightsCopyright (c) 2022 F. Cammarotoen-US
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 24 No. 3 (2022); 501–519en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 24 Núm. 3 (2022); 501–519es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectp-biharmonic operatoren-US
dc.subjectp-Laplacian operatoren-US
dc.subjectNavier problemen-US
dc.subjectmultiplicityen-US
dc.titleInfinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operatoren-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record