Show simple item record

dc.creatorRodrigues de Oliveira Neto, Ricardo
dc.creatorFerreira Rodrigues, Larissa
dc.creatorMari, João Fernando
dc.creatorCoelho Naldi, Murilo
dc.creatorGomes Milagres, Emerson
dc.creatorRocha Vital, Benedito
dc.creatorOliveira Carneiro, Angélica de Cássia
dc.creatorBreda Binoti, Daniel Henrique
dc.creatorFalco Lopes, Pablo
dc.creatorGarcia Leite, Helio
dc.date2021-01-01
dc.date.accessioned2023-03-13T20:59:27Z
dc.date.available2023-03-13T20:59:27Z
dc.identifierhttps://revistas.ubiobio.cl/index.php/MCT/article/view/4921
dc.identifier10.4067/s0718-221x2021000100465
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/224313
dc.descriptionThe differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad del Bio-Bioen-US
dc.relationhttps://revistas.ubiobio.cl/index.php/MCT/article/view/4921/4069
dc.rightshttp://creativecommons.org/licenses/by/4.0en-US
dc.sourceMaderas-Cienc Tecnol; Vol. 23 (2021); 1-12en-US
dc.sourceMaderas-Cienc Tecnol; Vol. 23 (2021); 1-12es-ES
dc.source0718-221X
dc.source0717-3644
dc.subjectCharcoalen-US
dc.subjectclassificationen-US
dc.subjectdeep learningen-US
dc.subjectnative wooden-US
dc.subjectpreprocessingen-US
dc.titleAutomatic identification of charcoal origin based on deep learningen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record