• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad del Bío-Bío
  • Maderas: Ciencia y Tecnología
  • View Item
  •   Home
  • Universidad del Bío-Bío
  • Maderas: Ciencia y Tecnología
  • View Item

Predictive expressions for withdrawal force capacity of various size of dowels from particleboard and medium density fiberboard

Author
Yüksel, Mehmet

Kılıç, Halil

Kuşkun, Tolga

Kasal, Ali

Full text
https://revistas.ubiobio.cl/index.php/MCT/article/view/5455
10.4067/s0718-221x2022000100436
Abstract
The objective of this study was to develop predictive expressions for estimating the withdrawal force capacity of various size of beech (Fagus orientalis) dowels from medium density fiberboard (MDF) and particleboard (PB). Furthermore, effects of the base material type, dowel diameter, dowel penetration and adhesive type on withdrawal force capacity were investigated. Polyurethane (PU), polyvinyl acetate based D2, and polyvinyl acetate (PVA) adhesives were utilized for gluing of dowels. A total of 540 specimens were prepared for edge and face withdrawal force capacity tests including two material types (MDF, PB), three dowel diameters (6 mm, 8 mm, 10 mm), three dowel penetration depths (15 mm, 20 mm, 25 mm for edge, 6 mm, 9 mm, 12 mm for face), three adhesive types and five replications for each group.  Specimens were tested under static withdrawal forces. Based on results of tests, predictive expressions that allow furniture engineers to estimate edge and face dowel withdrawal force capacity as a function of dowel diameter and dowel penetration were developed. Calculations showed that the expressions developed provided reasonable estimates for withdrawal force capacity of dowels. As a result of statistical analyses, material type, dowel diameter, dowel penetration, adhesive type and their four-way interaction have significantly affected the withdrawal force capacity of dowels. Test results also indicated that PU adhesive and MDF ranked the highest withdrawal force capacity among the adhesive and material types. Increasing either dowel diameter or penetration tended to have a positive effect on withdrawal force capacity. Dowel diameter was found to have a higher effect on withdrawal force capacity than dowel penetration.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB