Global convergence analysis of Caputo fractional Whittaker method with real world applications
Author
Kumar Nayak, Sapan
Parida, P. K.
Abstract
The present article deals with the effect of convexity in the study of the well-known Whittaker iterative method, because an iterative method converges to a unique solution \(t^*\) of the nonlinear equation \(\psi(t)=0\) faster when the function's convexity is smaller. Indeed, fractional iterative methods are a simple way to learn more about the dynamic properties of iterative methods, i.e., for an initial guess, the sequence generated by the iterative method converges to a fixed point or diverges. Often, for a complex root search of nonlinear equations, the selective real initial guess fails to converge, which can be overcome by the fractional iterative methods. So, we have studied a Caputo fractional double convex acceleration Whittaker's method (CFDCAWM) of order at least (\(1+2\zeta\)) and its global convergence in broad ways. Also, the faster convergent CFDCAWM method provides better results than the existing Caputo fractional Newton method (CFNM), which has (\(1+\zeta\)) order of convergence. Moreover, we have applied both fractional methods to solve the nonlinear equations that arise from different real-life problems.