• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de Concepción
  • Journal of Oral Research
  • View Item
  •   Home
  • Universidad de Concepción
  • Journal of Oral Research
  • View Item

Fibroblast response to initial attachment and proliferation on titanium and zirconium surfaces.

Author
Meza-Rodríguez, Araceli

Martínez-Álvarez, Omar

Acosta-Torres, Laura

de la Fuente-Hernández, Javier

García-Contreras, René

Full text
http://www.joralres.com/index.php/JOR/article/view/joralres.2016.043
10.17126/joralres.2016.043
Abstract
Introduction: In recent decades, dental implants have become one of the best options for comprehensive dental restoration; their placement is a multidisciplinary task that requires a solid understanding of biological, periodontal, surgical and prosthetic principles. Objective: The aim of this study was to quantify in vitro the adhesion and proliferation of human gingival fibroblasts’ (HGF) response on titanium (Ti) and zirconia (Zr) surfaces. Methodology: Samples of Ti and Zr were observed under atomic force microscopy (AFM). HGFs were inoculated in each sample to determine adhesion and cell proliferation. The MTT reagent was mixed with DMEM and inoculated in each plate; formazan was dissolved with dimethyl sulfoxide and analyzed at 540 nm in a microplate spectrophotometer. The test was performed with three independent experiments. Data were analyzed with Kolmogorov-Smirnov tests (Lilliefors), Kruskal-Wallis tests and Mann-Whitney test comparisons. Results: Topography of the Zr plates showed greater roughness (Ra= 0.39μm) than Ti (Ra= 0.049μm). Quantification of HGF adhesion was significantly higher (p˂0.05) in Ti, while proliferation showed no statistically significant differences between the groups. Conclusion: It is noteworthy that, even though Ti initially showed increased cell adhesion on the surface, after 24 h Zr samples showed similar proliferation; this demonstrates that both surfaces have a comparable biological response.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB