• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Pontificia Universidad Católica de Chile
  • Revista de la Construcción. Journal of Construction
  • View Item
  •   Home
  • Pontificia Universidad Católica de Chile
  • Revista de la Construcción. Journal of Construction
  • View Item

Nonlinear finite element analysis of steel fiber reinforced concrete beams subjected to impact loads

Author
Serdar, Ahmet Hamdi

Caglar, Naci

Demirtas, Gamze

Saribiyik, Mehmet

Full text
https://revistadelaconstruccion.uc.cl/index.php/RDLC/article/view/60389
10.7764/RDLC.23.1.88
Abstract
Steel fiber reinforced concrete, compared to the conventional concrete; is a composite building material that performs much better in terms of parameters such as ductility, energy absorption capacity, fracture toughness, fatigue resistance, and the use of steel fiber reinforced concrete (SFRC) in structures has become widespread. In this study, a nonlinear finite element model (FEM) has been developed that can represent the behavior of beams produced by using steel fiber concrete subjected to impact load. For this purpose, a finite element model of beam series produced with fiber-reinforced concrete obtained from the literature was created. The ABAQUS package program was used to create models simulating the behavior. Numerical results showed that the model could successfully capture the experimental results of beams selected from the literature. In addition to simulation, a parametric study was also performed to investigate the effect of stirrups, reinforcement ratio, and drop height on the behavior of SFRC beams under impact loads. The results of the parametric study showed that increasing the fiber ratio and reinforcement ratio positively affected the behavior of SFRC beams in terms of displacement recovery.Steel fiber reinforced concrete, compared to the conventional concrete; is a composite building material that performs much better in terms of parameters such as ductility, energy absorption capacity, fracture toughness, fatigue resistance, and the use of steel fiber reinforced concrete (SFRC) in structures has become widespread. In this study, a nonlinear finite element model (FEM) has been developed that can represent the behavior of beams produced by using steel fiber concrete subjected to impact load. For this purpose, a finite element model of beam series produced with fiber-reinforced concrete obtained from the literature was created. The ABAQUS package program was used to create models simulating the behavior. Numerical results showed that the model could successfully capture the experimental results of beams selected from the literature. In addition to simulation, a parametric study was also performed to investigate the effect of stirrups, reinforcement ratio, and drop height on the behavior of SFRC beams under impact loads. The results of the parametric study showed that increasing the fiber ratio and reinforcement ratio positively affected the behavior of SFRC beams in terms of displacement recovery.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB