• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Sociedad Chilena de Química
  • Journal of the Chilean Chemical Society
  • View Item
  •   Home
  • Sociedad Chilena de Química
  • Journal of the Chilean Chemical Society
  • View Item

SYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES MEDIATED BY THE MENTHA PIPERITA LEAVES EXTRACT AND EXPLORATION OF ITS ANTIMICROBIAL ACTIVITIES

Author
Hussain, Zawar

Jahangeer, Muhammad

Sarwar, Abid

Ullah, Najeeb

Alharbi, Metab

Aziz, Tariq

Alshammari, Abdulrahman

Full text
http://www.jcchems.com/index.php/JCCHEMS/article/view/2313
Abstract
Medicinal use of nanotechnology included a significant contribution from the antibacterial activity of biologically produced silver nanoparticles (AgNPs). Scientists investigated an efficient and environmentally friendly way to make silver nanoparticles by extracting Mentha piperita leaves as well as using their antimicrobial properties. Green synthesis method was used to produce AgNps from extract of mint plant and characterization was done by XRD, SEM and UV Visible Spectroscopy. A peak at 440 nm, which corresponds to the plasmon absorbance of silver nanoparticles, was evident in the UV-visible spectra of the solution containing AgNPs. Scanning electron microscopy observed that the nanoparticles were spherical in shape and ranged in size from 20 to 50 nm. The planes (111), (200), and (220) were found using the XRD patterns and value 0f 2θ:  38.50, 46.30 and 64.70 are observed. The silver nanoparticle's existence was verified by the face-centered cubic (FCC). Silver nanoparticles were found to have antibacterial efficacy against both gram-positive Staphylococcus and gram-negative bacteria such Pseudomonas aeruginosa, Klebsiella Aerogenes, Salmonella, Staphylococcus and E. coli. The antibacterial activity of silver nanoparticles against bacterial strains were observed using the agar well diffusion (AWD) method at three different concentrations (100µgml-1, 75 µgml-1, and 50 µgml-1). The zone of inhibition measured against the bacterial strains pseudomonas Aeruginosa, Klebsiella aerogenes, E. coli, Salmonella and Staphylococcus which were (18.7±1.25mm, 16.5±0.74mm, 14.0±1.25mm), (16.3±0.96mm, 14.5±0.76mm, 14.0±1.15mm), (16±0.76mm, 14.4±0.66mm, 14.0±1.15mm), (16.5±0.67mm, 14.5±0.23mm, 12.6±0.78mm) and (110.2±0.68mm, 8.8±0.20mm, 7.0±0.15mm). These nanoparticles' potent antibacterial properties may enable them to be employed as nanomedicines for a variety of gram-negative bacterial illness treatments.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB