Colombian Agricultural Sector’s Early Estimator of Gross Domestic Production Using Nowcasting and Big Data Methods
Indice de estimación temprana del producto interno bruto del sector agrícola usando Google News y Google Trends
dc.creator | Bravo Higueraa, Diego Fernando | |
dc.creator | Parra Bernal , León Darío | |
dc.creator | Argote Cusi, Milenka Linneth | |
dc.creator | Torres Pineda, Grace Andrea | |
dc.date | 2024-07-11 | |
dc.date.accessioned | 2025-05-19T19:56:43Z | |
dc.date.available | 2025-05-19T19:56:43Z | |
dc.identifier | https://www.jotmi.org/index.php/GT/article/view/4364 | |
dc.identifier | 10.4067/S0718-27242024000200054 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/253079 | |
dc.description | Facing challenges like the COVID-19 pandemic, statistical production increasingly relies on non-traditional data sources for timely and accurate information. In this regard, The National Statistical Office of Colombia (DANE, by its acronym in Spanish) initiated a project, supported by the Statistics Advisory Council, to develop an early estimator for the Colombian agricultural sector. This paper presents the results for the implementation of a Ridge model and Zero Shot Classification to estimate the Gross Domestic Product (GDP) of the agricultural sector, leveraging Google News and Google Trends. Results reveal that these alternative sources offer valuable insights into economic trends. Combining machine learning techniques with Nowcasting methods yielded precise projections. The Ridge method demonstrated the lowest estimation error, providing an early GDP indicator for the agricultural sector of 8,188 billion Colombian pesos for 2022 Q2, 30 days ahead of official publication. | en-US |
dc.description | La Oficina Nacional de Estadística de Colombia (DANE) ha estructurado un proyecto con el apoyo de los miembros del Consejo Asesor de Estadística para desarrollar una metodología para calcular un estimador temprano del sector agrícola colombiano utilizando Google News y Google Trends, como una fuente alternativa de información. Este documento describe la estrategia propuesta seguida por el DANE para obtener un estimador temprano del Producto Interno Bruto (PIB). Para el cálculo del indicador descrito, se combinó el uso de la Clasificación de Cero Disparos para analizar la información de texto recopilada de las dos fuentes descritas en los últimos 17 años, con la implementación de un modelo Ridge para estimar el PIB del sector agrícola para el caso de Colombia. Los resultados para el sector agrícola en Colombia indican que las fuentes alternativas de Google Trends y Google News proporcionan información invaluable para predecir tendencias en el comportamiento económico de un sector dado. A su vez, la combinación de técnicas de aprendizaje automático como redes neuronales con técnicas de Nowcasting arrojó un resultado positivo con altos niveles de ajuste y precisión de la proyección de los indicadores en comparación con los métodos convencionales. | es-ES |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Facultad de Economía y Negocios, Universidad Alberto Hurtado | en-US |
dc.relation | https://www.jotmi.org/index.php/GT/article/view/4364/1540 | |
dc.rights | Copyright (c) 2024 Journal of Technology Management & Innovation | en-US |
dc.rights | https://creativecommons.org/licenses/by-sa/4.0 | en-US |
dc.source | Journal of Technology Management & Innovation; Vol. 19 No. 2 (2024); 54-66 | en-US |
dc.source | Journal of Technology Management & Innovation; Vol. 19 Núm. 2 (2024); 54-66 | es-ES |
dc.source | 0718-2724 | |
dc.subject | Nowcasting | en-US |
dc.subject | Forecasting | en-US |
dc.subject | google trends | en-US |
dc.subject | Machine Learnig | en-US |
dc.subject | Big Data | en-US |
dc.subject | Estimación temprana | es-ES |
dc.subject | proyecciones | es-ES |
dc.subject | Google tendencias | es-ES |
dc.subject | Aprendizaje de Maquinas | es-ES |
dc.subject | Big Data | es-ES |
dc.title | Colombian Agricultural Sector’s Early Estimator of Gross Domestic Production Using Nowcasting and Big Data Methods | en-US |
dc.title | Indice de estimación temprana del producto interno bruto del sector agrícola usando Google News y Google Trends | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | en-US |