• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item

On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces

Author
Leiva, Hugo

Matute, Jesús

Merentes, Nelson

Sánchez, José

Full text
https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1176
10.4067/S0719-06462015000200004
Abstract
In this paper we prove existence and uniqueness of the solutions for a kind of Volterra equation, with an initial condition, in the space of the continuous functions with bounded variation which take values in an arbitrary Banach space. Then we give a parameters variation formula for the solutions of certain kind of linear integral equation. Finally, we prove exact controllability of a particular integral equation using that formula. Moreover, under certain condition, we find a formula for a control steering of a type of system which is studied in the current work, from an initial state to a final one in a prescribed time.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB