dc.creator | Aoyama, Koji | |
dc.creator | Kimura, Yasunori | |
dc.date | 2014-03-01 | |
dc.identifier | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1284 | |
dc.identifier | 10.4067/S0719-06462014000100002 | |
dc.description | The aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, we show some convergence theorems for variational inequality problems, zero point problems, and fixed point problems. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1284/1136 | |
dc.source | CUBO, A Mathematical Journal; Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal; 09–20 | en-US |
dc.source | CUBO, A Mathematical Journal; Vol. 16 Núm. 1 (2014): CUBO, A Mathematical Journal; 09–20 | es-ES |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.subject | Viscosity approximation method | en-US |
dc.subject | nonexpansive mapping | en-US |
dc.subject | fixed point | en-US |
dc.subject | hybrid steepest descent method | en-US |
dc.title | Viscosity approximation methods with a sequence of contractions | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |