Show simple item record

dc.creatorAoyama, Koji
dc.creatorKimura, Yasunori
dc.date2014-03-01
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1284
dc.identifier10.4067/S0719-06462014000100002
dc.descriptionThe aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, we show some convergence theorems for variational inequality problems, zero point problems, and fixed point problems.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1284/1136
dc.sourceCUBO, A Mathematical Journal; Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal; 09–20en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 16 Núm. 1 (2014): CUBO, A Mathematical Journal; 09–20es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectViscosity approximation methoden-US
dc.subjectnonexpansive mappingen-US
dc.subjectfixed pointen-US
dc.subjecthybrid steepest descent methoden-US
dc.titleViscosity approximation methods with a sequence of contractionsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record