Show simple item record

dc.creatorHislop, Peter D.
dc.date2012-10-01
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1328
dc.identifier10.4067/S0719-06462012000300001
dc.descriptionWe present the basics of two-body quantum-mechanical scattering theory and the theory of quantum resonances. The wave operators and S-matrix are constructed for smooth, compactly-supported potential perturbations of the Laplacian. The meromorphic continuation of the cut-off resolvent is proved for the same family of Schrödinger operators. Quantum resonances are defined as the poles of the meromorphic continuation of the cut-off resolvent. These are shown to be the same as the poles of the meromorphically continued S-matrix. The basic problems of the existence of resonances and estimates on the resonance counting function are described and recent results are presented.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1328/1183
dc.sourceCUBO, A Mathematical Journal; Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal; 01–39en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 14 Núm. 3 (2012): CUBO, A Mathematical Journal; 01–39es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectScattering theoryen-US
dc.subjectresonancesen-US
dc.subjectSchr¨odinger equationen-US
dc.subjectwave operatorsen-US
dc.subjectquantum mechanicsen-US
dc.titleFundamentals of scattering theory and resonances in quantum mechanicsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record