dc.creator | Ibrahim, Rabha W. | |
dc.date | 2012-10-01 | |
dc.identifier | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1336 | |
dc.identifier | 10.4067/S0719-06462012000300009 | |
dc.description | In this paper we shall establish sufficient conditions for the existence of solutions of a class of fractional differential equation (Cauchy type ) and its solvability in a subset of the Banach space. The main tool used in our study is the non-expansive operator technique. The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1336/1191 | |
dc.source | CUBO, A Mathematical Journal; Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal; 129–142 | en-US |
dc.source | CUBO, A Mathematical Journal; Vol. 14 Núm. 3 (2012): CUBO, A Mathematical Journal; 129–142 | es-ES |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.subject | Fractional calculus | en-US |
dc.subject | fractional differential equation | en-US |
dc.subject | Cauchy equation | en-US |
dc.subject | Riemann-Liouville fractional operators | en-US |
dc.subject | Volterra integral equation | en-US |
dc.subject | non-expansive mapping | en-US |
dc.subject | iterative differential equation | en-US |
dc.title | Existence of deviating fractional differential equation | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |