Show simple item record

dc.creatorKovalevsky, Alexander A.
dc.creatorNicolosi, Francesco
dc.date2012-06-01
dc.date.accessioned2019-04-17T15:45:24Z
dc.date.available2019-04-17T15:45:24Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1347
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/45050
dc.descriptionIn a bounded open set of ℝn we consider the Dirichlet problem for nonlinear 2m-order equations in divergence form with L1 -right-hand sides. It is supposed that 2 ≤ m < n, and the coefficients of the equations admit the growth of rate p − 1 > 0 with respect to the derivatives of order m of unknown function. We establish that under the condition p ≤ 2 − m/n for some L1 -data the corresponding Dirichlet problem does not have W-solutions.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1347/1202
dc.sourceCUBO, A Mathematical Journal; Vol. 14 Núm. 2 (2012): CUBO, A Mathematical Journal; 175–182es-ES
dc.sourceCUBO, A Mathematical Journal; Vol 14 No 2 (2012): CUBO, A Mathematical Journal; 175–182en-US
dc.source0719-0646
dc.source0716-7776
dc.titleOn a Condition for the Nonexistence of W-Solutions of Nonlinear High-Order Equations with L¹ -Dataen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record