Show simple item record

dc.creatorGoswami, Anjali
dc.date2012-03-01
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1355
dc.identifier10.4067/S0719-06462012000100007
dc.descriptionIn this paper, an infinitesimal transformation xi = xi + ⋲ vi (xj ), where the vector vi is recurrent has been considered in an NPR- Finsler space. Such transformation is being called special recurrent transformation if the recurrence vector of the NPR-Finsler space is Lie invariant. Besides different properties of such transformation, the conditions for such transformation to be curvature collineation and an affine motion have been obtained.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1355/1210
dc.sourceCUBO, A Mathematical Journal; Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal; 81–91en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 14 Núm. 1 (2012): CUBO, A Mathematical Journal; 81–91es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectNPR-Finsler spaceen-US
dc.subjectrecurrent vector fieldsen-US
dc.subjectspecial recurrent transformationen-US
dc.subjectcurvature collineationen-US
dc.subjectaffine motionen-US
dc.titleSpecial recurrent transformation in an NPR-Finsler spaceen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record