• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item

On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible

Author
Argyros, Ioannis K.

Hilout, Saïd

Full text
https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1359
10.4067/S0719-06462011000300001
Abstract
We provide a semilocal convergence analysis for Newton–type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Fr´echet– derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton–type methods [1]–[12]. We also provide weaker sufficient convergence conditions, and finer error bound on the distances involved (under the same computational cost) than [1]–[12], in some intersting cases. Numerical examples are also provided in this study.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB