dc.creator | Levstein, Fernando | |
dc.creator | Maldonado, Carolina | |
dc.date | 2010-06-01 | |
dc.identifier | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1407 | |
dc.identifier | 10.4067/S0719-06462010000200005 | |
dc.description | The point graph of a generalized quadrangle GQ(s, t) is a strongly regular graph Γ = srg(ν, κ, λ, µ) whose parameters depend on s and t. By a detailed analysis of the adjacency matrix we compute the Terwilliger algebra of this kind of graphs (and denoted it by T ). We find that there are only two non-isomorphic Terwilliger algebras for all the generalized quadrangles. The two classes correspond to wether s2 = t or not. We decompose the algebra into direct sum of simple ideals. Considering the action T × ℂX → ℂX we find the decomposition into irreducible T-submodules of ℂX (where X is the set of vertices of the Γ). | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1407/1260 | |
dc.source | CUBO, A Mathematical Journal; Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal; 53–75 | en-US |
dc.source | CUBO, A Mathematical Journal; Vol. 12 Núm. 2 (2010): CUBO, A Mathematical Journal; 53–75 | es-ES |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.subject | strongly regular graphs | en-US |
dc.subject | generalized quadrangles | en-US |
dc.subject | Terwilliger algebra | en-US |
dc.title | Generalized quadrangles and subconstituent algebra | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |