Show simple item record

dc.creatorLevstein, Fernando
dc.creatorMaldonado, Carolina
dc.date2010-06-01
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1407
dc.identifier10.4067/S0719-06462010000200005
dc.descriptionThe point graph of a generalized quadrangle GQ(s, t) is a strongly regular graph Γ = srg(ν, κ, λ, µ) whose parameters depend on s and t. By a detailed analysis of the adjacency matrix we compute the Terwilliger algebra of this kind of graphs (and denoted it by T ). We find that there are only two non-isomorphic Terwilliger algebras for all the generalized quadrangles. The two classes correspond to wether s2 = t or not. We decompose the algebra into direct sum of simple ideals. Considering the action T × ℂX → ℂX we find the decomposition into irreducible T-submodules of ℂX (where X is the set of vertices of the Γ).en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1407/1260
dc.sourceCUBO, A Mathematical Journal; Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal; 53–75en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 12 Núm. 2 (2010): CUBO, A Mathematical Journal; 53–75es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectstrongly regular graphsen-US
dc.subjectgeneralized quadranglesen-US
dc.subjectTerwilliger algebraen-US
dc.titleGeneralized quadrangles and subconstituent algebraen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record