dc.creator | Raymond, Nicolas | |
dc.date | 2010-03-01 | |
dc.date.accessioned | 2019-04-17T15:45:34Z | |
dc.date.available | 2019-04-17T15:45:34Z | |
dc.identifier | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1427 | |
dc.identifier.uri | http://revistaschilenas.uchile.cl/handle/2250/45129 | |
dc.description | The aim of this paper is to establish uniform estimates of the bottom of the spectrum of the Neumann realization of (𝒾∇ + qA)2 on a bounded open set Ω with smooth boundary when |∇ × A| = 1 and q → +∞. This problem was motivated by a question occurring in the theory of liquid crystals and appears also in superconductivity questions in large domains. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1427/1283 | |
dc.source | CUBO, A Mathematical Journal; Vol. 12 Núm. 1 (2010): CUBO, A Mathematical Journal; 67–81 | es-ES |
dc.source | CUBO, A Mathematical Journal; Vol 12 No 1 (2010): CUBO, A Mathematical Journal; 67–81 | en-US |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.title | Uniform Spectral Estimates for Families of Schrödinger Operators with Magnetic Field of Constant Intensity and Applications | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |