• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item

Convergence conditions for the secant method

Author
Argyros, Ioannis K.

Hilout, Saïd

Full text
https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1434
10.4067/S0719-06462010000100014
Abstract
We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz–type and center–Lipschitz–type instead of just Lipschitz–type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided in this study.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB