Show simple item record

dc.creatorCastillejo Nieto,Fabio Enrique
dc.creatorOlaya Floréz,Jhon Jairo
dc.creatorAlfonso Orjuela,José Edgar
dc.date2016-04-01
dc.date.accessioned2019-04-24T21:28:56Z
dc.date.available2019-04-24T21:28:56Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-33052016000200004
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/59213
dc.descriptionWe deposited of niobium-vanadium carbide coatings on tool steel AISI H13 using the thermo-reactive substrates deposition/diffusion (TRD) technique. The carbides were obtained using salt baths composed of molten borax, ferroniobium, vanadium and aluminum, by heating this mixture at 1020° C for 4 hours. The coatings were characterized morphologically via electron microscopy scanning (SEM), the chemical surface composition was determined through X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX); the crystal structure was analyzed using x-ray diffraction (XRD), the mechanical properties of the coatings were evaluated using nano-indentation, The tribological properties of the coatings obtained were determined using a Pin-on-disk tribometer and the electrochemical behavior was studied through potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that the hardness of the coated steel increased four times with respect to uncoated steel, and the electrochemical test established that the corrosion current is lower by one order of magnitude for coated steel.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de Tarapacá.
dc.relation10.4067/S0718-33052016000200004
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceIngeniare. Revista chilena de ingeniería v.24 n.2 2016
dc.subjectCoatings
dc.subjectthermo reactive
dc.subjectniobium-vanadium carbide
dc.subjectspectroscopy
dc.subjectimpedance
dc.titleElectrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion


This item appears in the following Collection(s)

Show simple item record