• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Sociedad Chilena de la Ciencia del Suelo
  • Journal of Soil Science and Plant Nutrition
  • View Item
  •   Home
  • Sociedad Chilena de la Ciencia del Suelo
  • Journal of Soil Science and Plant Nutrition
  • View Item

Determination of hydraulic conductivity and fines content in soils near an unlined irrigation canal in Guasave, Sinaloa, Mexico

Author
Delgado-Rodríguez,O

Peinado-Guevara,H. J

Green-Ruíz,C. R

Herrera-Barrientos,J

Shevnin,V

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-95162011000300002
Abstract
The determination of hydraulic conductivity is essential for the assessment of fluid migration rates in the subsurface. Geoelectric methods are often used in hydrogeological studies as quick and inexpensive tools. The relation between saturated soil hydraulic conductivity (K), clay content and soil resistivity allows an estimation of clay content and K from electrical measurements made in the field or laboratory. In this work, a methodology for estimating fines (silt+clay) content and K from electrical measurements in silt-loam soils is presented. A textural analysis was performed in 73 soil samples collected from 21 boreholes located in the municipality of Guasave, Sinaloa, Mexico, to determine the sections with a greater infiltration of water from the Valle del Fuerte irrigation canal to the local aquifer. The calculated values of texture and K were used to develop a new empirical equation, K = 0.101176 * FINES-1.62, which achieved a new relation to properly estimate the K values from the percentage of fines content. Electrical measurements were performed in the laboratory for each soil sample to determine the fines content. The K values, which were determined by a new empirical equation, showed an acceptable correlation with the values obtained by traditional techniques for silt and silt loam soils with a clay content < 35%. Water resistivity measurements were performed for samples collected from wells and flumes, showing that the water salinity of the canal is significantly lower than the groundwater. Due to the location of the Valle del Fuerte canal and soil K values, the water infiltrated from the flume into the subsoil creates a barrier preventing or slowing down the advance of the saltwater intrusion from the Sea of Cortez. Short Electrical Resistivity Tomography (ERT) profiles were carried out to determine the surface stratigraphy. The results achieved by the application of ERT and the groundwater salinity values allowed the recalculation of the geoelectrical sections in the fines content and K sections, resulting in a new, faster and less expensive procedure for the determination of hydraulic and petrophysical parameters.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB