• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Pontificia Universidad Católica de Chile
  • Latín American Journal of Economics
  • View Item
  •   Home
  • Pontificia Universidad Católica de Chile
  • Latín American Journal of Economics
  • View Item

HOW INFORMATIVE ARE IN-SAMPLE INFORMATION CRITERIA TO FORECASTING?: THE CASE OF CHILEAN GDP

Author
MEDEL,CARLOS A

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0719-04332013000100005
Abstract
This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria-Akaike, Schwarz, and Hannan-Quinn. The analysis also addresses the role of seasonal adjustment and the Easter effect. The results show that Akaike and Schwarz are better criteria for forecasting when using actual series and Schwarz and Hannan-Quinn are better with seasonally adjusted data. Accounting for the Easter effect improves forecast accuracy for actual and seasonally adjusted data.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB