• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Sociedad de Biología de Chile
  • Revista Chilena de Historia Natural
  • View Item
  •   Home
  • Sociedad de Biología de Chile
  • Revista Chilena de Historia Natural
  • View Item

The effects of temperature and oxygen availability on intracapsular development of Acanthina monodon (Gastropoda: Muricidae)

Author
FERNÁNDEZ,MIRIAM

PAPPALARDO,PAULA

JENO,KATHERINE

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-078X2006000200002
Abstract
Freshwater and marine organisms show similar models of parental care and are faced with similar constraints to brood, which suggest that comparable environmental limits drive the evolution of parental care in aquatic systems. In fact, the low diffusion coefficient and solubility of oxygen in aquatic environments affect oxygen acquisition and therefore the capacity to aggregate embryos. The effect of other critical environmental variables, such as temperature, is less clear. We assessed the effects of temperature and oxygen availability on (1) the number of developed and undeveloped encapsulated embryos, (2) the proportion of embryos reaching advanced stages during intracapsular development (counting not only developed and undeveloped embryos but also abnormal embryos), (3) asynchrony in development (estimated only in capsules in which development occurred), and (4) final embryo size, as the first step toward identifying the main factors constraining parental care in the ocean. We used the gastropod Acanthina monodon as a model because it has an extended latitudinal range of distribution and exhibits feeding larvae during intracapsular development. The latter factor is relevant because previous studies have suggested that sibling cannibalism could be triggered by intracapsular competition for oxygen. Freshly laid egg capsules were collected and incubated until embryos hatched under different experimental temperatures (7, 11, 15 and 19 °C) and oxygen conditions (hypoxia: 50-60 % air saturation; normoxia; and hyperoxia: 150-160 %). More embryos remained in early stages at the end of the experimental period under hypoxia and at the highest experimental temperature. The mean number of developed embryos was significantly lower under hypoxia conditions than under normoxia and hyperoxia, but was not influenced by temperature. However, temperature negatively affected embryo size of developed embryos and the level of asynchrony (number of different developmental stages per capsule). This suggests that even when a comparable number of embryos develops at high temperature, subsequent survival may be affected, since developed embryos attained smaller sizes. The negative effect of high temperature on embryo aggregation has also been reported for Brachyuran crabs, affecting female patterns of oxygen provision and brooding costs. This evidence suggests that aggregating embryos in the ocean, even under optimum oxygen conditions, may be negatively affected at high temperatures. Spatial patterns of distribution of brooding species in the ocean tend to agree with this prediction. Our analysis is particularly relevant given the current increase in temperature and the proportion of anoxic areas in the world's oceans
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB