Assessing understory development in forest plantations using laser imaging detection and ranging (LiDAR)
Author
HERNÁNDEZ,JAIME
ACUÑA,M. PAZ
CORVALÁN,PATRICIO
SIMONETTI,JAVIER A
Abstract
Forestry plantations are expected to be managed in ways to conserve biodiversity while producing goods and services. This goal implies a significant challenge as plantations tend to reduce species richness. The presence of well developed understory enhances the value of plantations as habitat for native fauna. Here, we develop a straightforward method to assess the availability of understory in forestry stands using laser imaging detection and ranging (LiDAR) data and aerial RGB high resolution images. Based on field and airborne acquired data for Pinus radiata stands in central Chile, the digital crown model (DCM), derived from the subtraction of the digital terrain model (DTM) from the digital surface model (DSM) is a more reliable predictor of understory height that variables like terrain slope, aspect, plantation age and canopy height in forests and plantations which have not complete closed canopy. The correlation between DCM and understory though decreases while the actual height of the plantation canopy increases, rendering DCM a conservative estimate of understory development. The use of DCM will allow a fast and cost/effective estimate of habitat suitability in forestry plantations.