Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia
Author
Tovar-Sánchez,Efraín
Martí-Flores,Erwin
Valencia-Cuevas,Leticia
Mussali-Galante,Patricia
Abstract
BACKGROUND: Quercus crassifolia is an oak species with characteristics of foundation species, which is a canopy dominant element of different forest types that supports a wide diversity of associated species. Therefore, it is an excellent system to address important ecological questions. We analyzed the effect of individual genetic relatedness of the host plant, forest type (Abies-Quercus, Quercus-Pinus, and Quercus forest), and season (dry vs. rainy) on the canopy arthropod community structure. Thirty oak canopies were fogged (five individuals/season/forest type). RESULTS: We identified 442 arthropod species belonging to 22 orders. The highest values of density, diversity, and richness were recorded during the rainy season for each forest type. Also, the non-metric multidimensional scaling (NMDS) analysis showed a separation of the host tree species for each forest type. During the rainy season, the highest values of density, diversity, and richness in each forest type were recorded. A separation of host tree was found for each forest type. In general, diversity and richness of canopy arthropods showed the following pattern: Abies-Quercus > Quercus-Pinus > Quercus, while density showed an inverse pattern. An increase of the diversity of canopy arthropods is significantly related to an increase of host plant genetic diversity, independently of the type of forest and of the season. CONCLUSIONS: In terms of conservation, if arthropod species respond to genetic differences among host plants, it becomes important to conserve genetic diversity of foundation species, since it is fundamental to preserve diversity of their associated arthropod communities.