Gastrodia elata Blume and its pure compounds protect BV-2 microglial-derived cell lines against β-amyloid: The involvement of GRP78 and CHOP
Author
Geum-Hwa,Lee
Hyung-Ryong,Kim
Sang-Yong,Han
Bidur,Bhandary
Do-Sung,Kim
Min-Gul,Kim
Byung-Ok,So
Sun-Young,Kim
Kyu-Sik,Jo
Bo-Hee,Lee
Hee-Nam,Seo
Soo-Wan,Chae
Han-Jung,Chae
Abstract
Objectives: Gastrodia elata (GE) Blume (Orchidaceae) has been previously known for its therapeutic benefits against neurodegenerative diseases. Microglial activation and death have been implicated in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease. In this study, GE and its pure components, gastrodin and 4-hydroxybenzyl alcohol (4HBA), were applied to β-amyloid-induced BV2 mouse microglial cells. Materials and Methods Cell viability was assessed by the MTT assay and Western blotting was also performed. Results: β-amyloid-induced cell death was shown to be induced time- and dose-dependently. To examine the cell death mechanism, we confirmed the involvement of ER stress signaling. C/EBP homologous protein (CHOP), a pro-apoptotic ER stress protein, was expressed at high levels but glucose-regulated protein 78 (GRP78), an anti-apoptotic ER stress protein with chaperone activity, was only slightly affected by treatment with β-amyloid. However, pretreatment with GE and its components inhibited the expression of CHOP but increased that of GRP78 in β-amyloid-treated cells. This study also showed that a single treatment with GE extracts, gastrodin, or 4HBA induced the expression of GRP78, a marker for enhanced protein folding machinery, suggesting a protective mechanism for GE against β-amyloid. Conclusions: This study reveals the protective effects of GE against β-amyloid-induced cell death, possibly through the enhancement of protein folding machinery of a representative protein, GRP78, and the regulation of CHOP in BV2 mouse microglial cells.